RESEARCH MEMORANDUM HEAT TRANSFER MEASURED ON A FLAT-FACE CYLINDER IN FREE FLIGHT AT MACH NUMBERS UP TO 13.9 By William E. Stoney, Jr., and Andrew G. Swanson Langley Aeronautical Laboratory Langley Field, Va. LIBRARY JUN 20 1957 LANGLEY REPOWNUMENT LACORATORY NGLEY FIELD VIRGINIA NASA ltr e date: June 17162 FOR AERONAUTICS Nov. 30, 1962. By 1412. WASHINGTON June 17, 1957 # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS ## RESEARCH MEMORANDUM HEAT TRANSFER MEASURED ON A FLAT-FACE CYLINDER IN FREE FLIGHT AT MACH NUMBERS UP TO 13.9 By William E. Stoney, Jr., and Andrew G. Swanson #### SUMMARY A five-stage rocket model was flown to a Mach number of 13.9 and free-stream Reynolds number based on nose diameter of 1.6×10^6 at an altitude of 81,500 feet. Temperatures were measured at 12 stations on the front and sides of its flat-face copper nose. Heating rates calculated from the temperature time histories are compared with theoretical predictions of these rates. The stagnation heating rates agreed well with calculations which included estimates of real gas effects, and it appeared that no large transfer due to radiation was present. #### INTRODUCTION With the advent of hypersonic flight by missiles (and soon, perhaps, by aircraft), the phenomena associated with the aerodynamic heating of such bodies have become of prime importance. The noses of such bodies are usually the critical areas, and it has become apparent that some degree of bluntness must always be used to withstand the high heating rates of this flight regime. The perfectly flat nose is an extreme case of bluntness. For a given diameter it has lower heat-transfer rates at the stagnation point than any other shape (although the local rates rise toward the corners), and there is evidence that such extreme bluntness is favorable to longer runs of laminar flow. For these reasons a perfectly flat copper nose of 5-inch diameter was tested in free flight at the Langley Pilotless Aircraft Research Station at Wallops Island, Va., at Mach numbers up to 13.9 and an altitude of 81,500 feet. The results are compared herein with available appropriate theoretical calculations. The flight of this model is also interesting from the point of view of its overall design and performance. The model serves as an example of a reentry missile $\left(\frac{W}{C_DS} = 200 \text{ lb/sq ft}\right)$ with a maximum reentry velocity COMPTENDENT of about 13,600 feet per second, a reentry angle of -5° , and an impact Mach number of about 0.4. The fourth-stage rocket motor (JATO 1.52-KS-33, 550, XM19 (Recruit)) used in the present investigation was made available by the U. S. Air Force. # SYMBOLS | A _{n+1} | cross-sectional area between elements n and n+1 | |---------------------------|-------------------------------------------------------------------------------| | A _{n-1} | cross-sectional area between elements n and n-l | | a _O | speed of sound at stagnation point | | $^{\mathrm{C}}\mathrm{D}$ | drag coefficient | | С _Н | heat-transfer coefficient, $\frac{q}{\rho_l c_{p,l} U_l} \frac{1}{T_0 - T_w}$ | | c_p | heat capacity | | D | diameter | | D ₁₂ | coefficient of diffusion between atoms and molecules | | h | enthalpy | | k | conductivity | | 7 | distance along surface of nose measured from center line | | Δl_{n+1} | distance between thermocouple locations of elements n and n+1 | | Δl_{n-1} | distance between thermocouple locations of elements n and n-l | | M | Mach number | | $^{ m N}_{ m Le}$ | Lewis number, $\frac{\rho D_{12}c_p}{k}$ | | | | OMET DENNITAT N_{Nu} Nusselt number, $\frac{qlc_{p,w}}{k_w(h_t - h_w)}$ N_{Pr} Prandtl number P pressure q heating rate, Btu/(sec)(sq ft) q' apparent heating rate, $\rho_c c_{p,c} \tau_c \frac{dT}{dt}$ q_{o,f} ratio of stagnation heating rate on flat face to stagnation heating rate on hemisphere of equal diameter R Reynolds number $$R_{l} \equiv \frac{\rho_{l}U_{l}l}{\mu_{l}}$$ $$R_{\text{W}} \equiv \frac{U_{\text{l}} l \rho_{\text{W}}}{\mu_{\text{W}}} = \left[\left(\frac{dU}{dx} \right)_{0} \right]^{2} \frac{\rho_{\text{W}}}{\mu_{\text{W}}} \quad \text{at stagnation point}$$ r radius of nose, 2.5 in. S frontal area of body $\mathbf{S}_{\mathbf{n}}$ surface area exposed to airstream of element \mathbf{n} T temperature, OF t time, sec U velocity W weight x horizontal range, ft z altitude, ft μ viscosity density τ thickness # Subscripts: | С | copper wall | |----|-------------------------------| | d. | based on diameter | | f | flat face | | h | hemisphere | | ı | local, outside boundary layer | | 0 | at stagnation point | | t | total | | w | air at temperature of wall | | ∞ | free stream | #### MODEL AND TEST ### Model The model was propelled by a five-stage rocket system: the first stage consisted of an M6 JATO "Honest John" rocket motor; the second and third stages, M5 JATO "Nike" rocket motors; the fourth stage, a JATO, 1.52-KS-33, 550, XM19 "Recruit" rocket motor; and the fifth stage, a JATO, 1.3-KS-4800, T55 rocket motor. A photograph of the complete assembly mounted on the launcher just prior to firing is shown in figure 1. Figure 2 presents a sketch of the five stages together with a table presenting the weights of the various components. A photograph of the model alone is presented in figure 3. Details of the nose construction and thermocouple installation and locations are shown in figure 4. The thermocouples were no. 30 gage platinum-rhodium wires beaded together in a ball which was peened into a small hole on the inner surface of the copper nose. No special care was taken with the finish of the surface, and it is estimated that the roughness was of the order of 60 microinches. #### Test The model was launched at an angle of 73° with the horizontal and followed the flight path shown in figure 5. Up to the firing of the third stage the information in figure 5 was obtained directly from tracking the model with an NACA modified SCR-584 radar unit. After this point it was necessary to correct the radar data through use of velocities obtained by integrating the time histories of two longitudinal accelerometers mounted inside the model. Near burnout of the last stage the radar lost the model completely, and the flight path after this point was calculated by use of the integrated velocities alone. After 94 seconds the flight path shown is the result of calculations alone since the decelerations, although measured all the way to splash, were too inaccurate to be used because of their low values. The complete flight path is shown in the small curve in figure 5. Because of accuracy limitations useful heating data could be obtained only for relatively high heat-transfer rates which occurred during the time period from 88 to 94 seconds; thus the flight conditions are presented in more detail for these times only. Figure 6 presents the velocity and altitude history of the model for this time period. As mentioned previously the velocities were obtained from adding integrated accelerometer values to the velocity obtained from the radar data at its last reliable velocity point, which was just before firing of the third-stage motor. Since a continuous error of 1 percent in the accelerometer readings would introduce an error of approximately ±400 feet per second in the peak velocity value, a possibility of errors of this magnitude must be considered. This possible spread is noted in the figures presenting velocity, Mach number, and calculated heating rates. The values of velocity and altitude of figure 6 were combined with radiosonde values of density and temperature to obtain the values of M and $R_{\infty,D}$ shown in figure 7. #### DATA REDUCTION The basic data of this test are the temperature measurements. temperature time histories for thermocouples 1 and 8 are presented in figure 8. The actual data points are circled. The filled circles represent points neglected in the fairing because of noise in the original data. The solid lines are those which were faired through the data by hand and French curve and which were used in the calculation of the These stations are typical of the front (thermolocal heating rates. couple 1) and side (thermocouple 8) temperature time histories. presents the values of the temperatures from these faired curves for all stations. The table has been continued for times beyond 94 seconds to a time well past that at which peak temperature occurred at the front surface stations. The values for times beyond 94 seconds were faired from plots having smaller scales than those used for the earlier times and thus may not be as reliable. This table has been included to enable the reader to check his own temperature calculation methods with the data of this flight. The slopes of these faired curves were read at 0.2-second intervals, and the resulting values were plotted and examined for obvious scatter in the values. The values of the slopes were then used in the equation $$q' = \rho_c c_{p,c} \tau_c \frac{\partial T}{\partial t}$$ (1) to calculate the apparent heating rate q' for each of the measured points. These apparent heating rates are shown by the dashed lines of figure 9. Internal and external radiation heating rates were so low as to be completely negligible during the period for which the heating rates were calculated. Temperature gradients in the skin normal to the surface were also neglected. Calculations for the effect of these gradients by a one-dimensional heat-flow analysis did little more than add scatter to the heating rates obtained by equation (1), which assumes constant temperature through the wall. These same calculations indicated a 40° difference between front and rear surface temperatures (at thermocouple 1) at the time of maximum heating. The heating rates calculated by equation (1) are called "apparent" because of the existence of fairly large lateral heat flows in the skin caused by the lateral temperature gradients in the skin. The magnitude of these temperature gradients may be seen from the plots of temperature as a function of position presented in figure 10. The 97-second line shows the temperature distribution for the time of the maximum temperatures recorded. The calculation of the lateral heating rates was made by the following method. The nose was divided into pie-shaped elements, one for each thermocouple position, and the temperature of each element was assumed to be that of the attached thermocouple: The following difference equation was used to calculate the real aerodynamic heat input to the element n under consideration: $$q_{n} = \rho_{c} c_{p,c} \tau_{c} \frac{dT_{n}}{dt} + \frac{kA_{n+1}}{S_{n}} \frac{(T_{n} - T_{n+1})}{\Delta l_{n+1}} + \frac{kA_{n-1}}{S_{n}} \frac{(T_{n} - T_{n-1})}{\Delta l_{n-1}}$$ (2) Equation (2) is an approximate method; however, because temperatures were measured at only a few points, this method was considered to be better than an attempt to calculate heating rates by obtaining $\frac{dT}{dx}$ and $\frac{d^2T}{dx^2}$ from the data and using the differential forms of the equation. The results of these calculations are the solid lines of figure 9. No attempt was made to calculate the values for thermocouple 4 (corner) since the high temperature gradient between thermocouples 4 and 5 made any accuracy in this region out of the question. #### ACCURACY The accuracy of telemeter and readout process is considered to be within ±2 percent of the full-scale value of any quantity. Thus the temperatures are considered to be accurate within ±20° although, as the plot of figure 8 shows, the scatter about the faired line is much less than this value. The values of q' are felt to be within ±5 percent. The accuracy of the correction due to skin heat conduction is unknown; however, for thermocouples 1, 2, 7, and 8, where the correction is small, large errors in it would be negligible. As mentioned previously, the possible errors in the correction for station 4 were so large as to make it useless. An estimation of the overall accuracy of the data can be made by comparisons of data for which the prime variables are supposedly constant. This type of comparison does not of course eliminate the possibility of systematic error in the measurements but only indicates its randomness or repeatability. Such a comparison is shown in figure 11 for two sets of thermocouples located on the face of the model at l/r = 0.4 and 0.8. These data were corrected for conduction as described previously (the temperatures at station 4 were used in the corrections for both thermocouples 10 and 12 as well as for thermocouple 3). The differences are believed to be real, that is, they are obvious even in the temperature-time plots, and are not merely the result of inaccuracies in fairing or computing. They may be the result of aerodynamic differences caused by rolling or the slight pitching motion of the model. Although the roll rate is not known, the normal and transverse accelerometers showed an oscillation during the test period of about ±3g. the lift-curve slope is assumed to be linear near zero angle of attack, this oscillation could be due to an angular oscillation of about $\pm 1\frac{1}{5}^{\circ}$. Some unpublished data from the Ames supersonic free-flight wind tunnel have indicated that blunt-nose flare-stabilized bodies such as the present test vehicle are unstable at small angles of attack, and if this is the case it would be difficult to say exactly what angles the measured transverse accelerations represent. Perhaps the important conclusion to be drawn from the comparisons of figure 11 is that the order of repeatability of the heating rates is ±25 Btu/(sec)(sq ft). This, of course, makes comparisons of low heating rates with theory of little value, for example, those on the front surface before 89 seconds. Note in figure 9 that the peaks and valleys in the low heating rates measured on the side thermocouples are of this same order, ±25 Btu/(sec)(sq ft). Another source of error was present in unknown amount because of the heat flow into the Micarta block which had been found necessary for the high temperature loads expected. Calculations by a one-dimensional heat-flow method, in which the measured temperature history of thermocouple 1 was assumed to exist on the surface of the Micarta, showed a negligible amount of heat loss to this source. The actual measurements were made in the center of $\frac{1}{4}$ - inch holes in the Micarta. However, relatively and toots made by pressing Micarta blocks against a strip of tively crude tests made by pressing Micarta blocks against a strip of stainless steel (in this case there was no hole around the wire) and heating the steel to simulate the temperature-time histories of the flight indicated that as much as 30 or 60 Btu/(sec)(sq ft) might be lost to the Micarta. A process such as sublimation or boiling of the Micarta would have to be present to explain the difference between the calculated and measured loss values. h= Ext + Ext. #### RESULTS AND DISCUSSION Comparison of Measured and Theoretical and Stagnation-Point # Heating Rates The measured heating rates (corrected for lateral conduction) for thermocouple 1 are compared in figure 12 with theoretical predictions based on the method of Fay and Riddell (ref. 1). This method assumes equilibrium conditions in the boundary layer and includes values for air under these conditions from National Bureau of Standards computations. Their results may be expressed by the following equation: $$q = \frac{N_{Nu}}{\sqrt{R_w}} \frac{\sqrt{\rho_w \mu_w \left(\frac{dU}{dx}\right)_0}}{N_{Pr}} (h_t - h_w)$$ where $$\frac{N_{Nu}}{\sqrt{R_{w}}} = 0.67 \left(\frac{\rho_{o}\mu_{o}}{\rho_{w}\mu_{w}}\right)^{0.4} \quad \text{for} \quad N_{Le} = 1 \quad \text{and} \quad N_{Pr} = 0.71$$ The evaluation of the temperature and viscosity was made by assuming ideal gas (constant c_p) conditions behind the normal shock. This assumption avoids the problems associated with determining the properties in the dissociated flow outside the boundary layer. In order to be consistent the equilibrium dissociation values of $\rho\mu$ used in the calculations of reference 1 should be used here also. The heating rates calculated by using the $\rho\mu$ values of reference 1 (fig. 1 of ref. 1) are only 2 to 3 percent higher than those calculated by using the ideal gas conditions. A value of $$\sqrt{\left(\frac{dU}{dx}\right)_O}$$ of the flat face equal to $0.5\sqrt{\left(\frac{dU}{dx}\right)_O}$ for a hemisphere of equal diameter was used $\left(\left(\frac{dU}{dx}\right)_{O,h} = \frac{1}{r}\sqrt{2\frac{P_O}{\rho_O}}\right)$ from Newtonian flow). This value of $\frac{q_{0,f}}{q_{0,h}} = 0.5$ was obtained by assuming the quantity $\frac{r}{a_{o}}\left(\frac{dU}{dx}\right)_{O}$ = Constant with Mach number. The details of this calculation are presented in the appendix. The band of uncertainty in the theory due to uncertainty in the velocity measurements is indicated in figure 12 for the maximum Mach number. Since the uncertainty in the theory is due to uncertainty in velocity alone and is proportional to the square of the velocity, the error would be considerably less for the earlier or later times. The difference between experimental and theoretical values is small and the agreement is especially good for the high heating rates where the experimental accuracy is best. The fact that the experimental values are always below the theoretical values indicated that no large unknown sources of heat transfer (by radiation of the gas layer, for example) occurred. Comparison of Measured and Theoretical Heating Rates Over Entire Front and Side of Nose No solutions exist which include directly the effects of equilibrium dissociation in the boundary layer for points other than the stagnation CONTRACTOR AND ADDRESS OF THE PARTY P point. It is possible (and easier) to calculate the ratios of local heating rate to the heating rate at the stagnation point and to use these ratios with the stagnation-point solution to obtain the values at places other than the stagnation point. Such methods do not, of course, account for the changes in state of the air about the body due to the changes in local temperature and pressure conditions and due to the effects of the finite relaxation times of the gases. These methods are the best available at the present time, however; two (refs. 2 and 3) are used for the face and another for the sides (ref. 4). Comparison of the data on the basis of ratios of local to stagnation heating rate has the added advantage of eliminating Mach number as an important variable. These comparisons are shown in figure 13. All the local experimental values are presented as ratios of the experimental stagnation-point heating rates. On the face the local theoretical values were divided by the stagnation-point theoretical values. On the sides the local theoretical values were divided by measured stagnation-point values, since the calculations for the local heating rates on the sides do not inherently have a stagnation value connected with them, and the use of measured stagnation values allows a more direct comparison of the calculated and measured local values. The data obtained on the front surface are compared with values calculated by two theories. These theories differ mainly in that Lees' results (ref. 2) are functions of local pressure but are not functions of pressure gradient directly as are the transformations used by Stine and Wanlass (ref. 3). It should be noted that both of these methods assume that $\rho\mu$ is constant across the boundary layer. Fay and Riddell in reference 1 have shown that at the higher speeds $\rho\mu$ varies considerably across the boundary layer, and it is this variation which causes the drop in $\frac{N_{u}}{\sqrt{R_{w}}}$ with increasing velocity. Presentation of the local theo- retical heating rates as ratios with the stagnation-point rates may eliminate or at least reduce the effects of this approximation in the theories of references 2 and 3 when applied to these higher Mach numbers. The results of both theories are no better than the pressure distributions which are used with them. The pressure distribution for both curves labeled M=1.5 is that calculated by Maccoll and Codd (ref. 5). (See appendix.) The pressures for the curve labeled M=5 were estimated from unpublished wind-tunnel data obtained by Morton Cooper of the Langley Gas Dynamics Branch. The pressures used for calculations at a Mach number of 5 must be considered to be preliminary in nature. The heat-transfer coefficients obtained from them are presented only to indicate the probable effect of Mach number on flat-face heat transfer. COMPANDAMENT It is apparent that the scatter in the data is such that no definite preference can be said to be shown any of the theoretical curves. However, the general distribution of the heating rates appears to follow the trend shown by all the theories, especially near the maximum Mach number, where the best accuracy in the data can be expected. It is reasonably certain that laminar flow was present on the face at all times during the flight. The data on the sides are compared with values calculated by laminar flat-plate theory $\left(^{\text{C}}_{\text{H}} \sqrt{^{\text{R}}_{\textit{l}}} \right)$ with the assumptions that the local conditions were such that the pressure all along the sides was equal to free-stream pressure and that the flow adjacent to the boundary layer had passed through a normal shock. The assumption of constant free-stream pressure on the side of the nose is questionable since over-expansion to pressures lower than stream pressure has been the experience at lower Mach numbers. While percentagewise the comparison between the theoretical or measured values appears to be only fair, actually in terms of the numerical values of heating rates it is usable for most engineering purposes. In spite of the scatter the data appear to follow the trend of decreasing heating-rate ratios with increasing Mach number. Although the data are compared with laminar calculations there is no real assurance other than the very low local Reynolds numbers $\left(0.01\times10^6 < R_1 < 0.1\times10^6\right)$ involved that the flow remained laminar. In fact, if the turbulent-theory curves of reference 4 are stretched a bit in the cool-wall direction, the values of turbulent $C_{\rm H}$ obtained are only from 10 to 100 percent higher than the laminar calculations. (See fig. 13.) This spread, when compared with the spread in the data points, is not enough to permit any conclusions to be drawn. #### General The flight of this model is interesting from the point of view of its overall design and performance. It serves as an example of a reentry missile $\left(\frac{W}{C_DS} = 200 \text{ lb/sq ft}\right)$ with a maximum reentry velocity of about 13,600 feet per second and a reentry angle of -5°. Extended trajectory calculations indicated an impact Mach number of about 0.4. The telemeter signal from the model was good all the way to splash, and the instruments indicated that the model was intact at this time. The temperatures at four stations are presented all the way to splash in figure 14 together with calculated values of altitude and Mach number. The temperature histories presented in figure 10 and figure 14 show the effectiveness of the sides as a heat sink, since the corners, which were probably receiving the highest heating rates, did not reach the highest temperatures. This was, of course, the result of the extremely low heating rates experienced on the sides as well as the high conductivity of copper. As noted previously, these low rates were apparently not dependent on the character of the boundary-layer flow because at these low local Reynolds numbers both the turbulent and the laminar heating rates were similar. #### CONCLUSIONS A five-stage rocket model was flown to a maximum Mach number of 13.9 at an altitude of 81,500 feet. Temperature time histories were taken at 12 stations located on the front and sides of its flat-face copper nose. Comparison of the heating rates derived from these temperature histories with theoretical calculations indicate the following two conclusions: - l. The measured stagnation heating rates agreed well with the rates calculated for equilibrium conditions by a method which included estimations of real gas effects. It appears that no large effects due to radiation from the gas layer were present. - 2. Comparison of theoretical and measured values of the ratios of local heating rates to stagnation-point heating rates showed reasonable agreement over the front surface. On the sides the crude assumption of local pressure equal to free-stream pressure gave poor agreement percentagewise; however, because of the low rates involved the absolute agreement was good enough for most engineering purposes. Langley Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., April 17, 1957. #### APPENDIX #### PRESSURE DISTRIBUTIONS ON FLAT FACE Since the calculations of heating rates can be no better than the accuracy of the local conditions on which they are based, a plot of the values used in this report is presented in figure 15. The curve of Maccoll and Codd (ref. 5) for M=1.5 calculated by a method employing successive approximations was used to calculate the heat-transfer rates. Recently tests were made in the preflight jet at the Langley Pilotless Aircraft Research Station at Wallops Island, Va., at a Mach number of 2, and a curve faired from these pressures is presented as a comparison. Even more recent tests by Morton Cooper of the Langley Gas Dynamics Branch showed somewhat higher pressures (for example, $P/P_0=0.88$ to 0.92 at l/r=0.9), and a curve faired through these data was used in the calculation by the method of Stine and Wanlass (labeled M=5 in fig. 13). As mentioned in the text this calculation was made only as an indication of the heat-transfer trend with increasing Mach number. Although the rate of change of velocity at the stagnation point is difficult to compute accurately from pressure distributions alone, the value obtained from the Maccoll and Codd distribution $\left(\frac{r}{a_0}\left(\frac{dU}{dx}\right)_0=0.3\right)$ gives a ratio of $\frac{q_0,f}{q_0,h}$ of 0.55 at M = 1.5. This value can be compared with the inviscid flow value of 0.65 obtained by Probstein (ref. 6). If it is assumed that the expression $\frac{r}{a_0}\left(\frac{dU}{dx}\right)_0=0.3$ is invariant with Mach number, this ratio of $\frac{q_0,f}{q_0,h}$ decreases with Mach number and reaches a limit of about 0.5 for Mach numbers above 4 (see fig. 16). For $\frac{r}{a_0}\left(\frac{dU}{dx}\right)_0$ to remain invariant means that the value of $\frac{P}{P_0}$ near the stagnation point is constant with Mach number also. Although the variations of $\frac{P}{P_0}$ between the M = 5, 2, and 1.5 values are small and the measurement accuracy is of nearly the same magnitude, it is noteworthy that the ratio $\frac{P}{P_0}$ increases with Mach number. This increase of $\frac{P}{P_0}$ with Mach number is most prominent at l/r near the edge. Such an increase at the edge, however, could be taken to mean that the values closer to the stagnation point increased with Mach number also. Even a small increase COMPANIE in $\frac{P}{P_0}$ near the stagnation point would decrease $\frac{r}{a_0} \left(\frac{dU}{dx}\right)_0$ at the stagnation point, which would indicate a reduction in $\frac{q_0,f}{q_0,h}$ even greater than that shown in figure 16(b). For this reason it appears probable that the theoretical heating rates calculated by using the ratio of $\frac{q_0,f}{q_0,h}=0.5$ are either correct of slightly too high. This invariance of $\frac{r}{a_0}\left(\frac{dU}{dx}\right)_0$ (or actually slight increase) is opposed to the variation commonly used for hypersonic flows, namely, $\frac{c_p}{c_{p,0}}=$ Constant. This relation predicts a decrease in values of $\frac{P}{P_0}$ with increasing Mach number. #### REFERENCES - 1. Fay, J. A., and Riddell, F. R.: Stagnation Point Heat Transfer in Dissociated Air. Res. Note 18, AVCO Res. Lab., June 1956. - 2. Lees, Lester: Laminar Heat Transfer Over Blunt-Nosed Bodies at Hypersonic Flight Speeds. Jet Propulsion, vol. 26, no. 4, Apr. 1956, pp. 259-269. - 3. Stine, Howard A., and Wanlass, Kent: Theoretical and Experimental Investigation of Aerodynamic Heating and Isothermal Heat-Transfer Parameters on a Hemispherical Nose With Laminar Boundary Layer at Supersonic Mach Numbers. NACA TN 3344, 1954. - 4. Van Driest, E. R.: The Problem of Aerodynamic Heating. Aero. Eng. Rev., vol. 15, no. 10, Oct. 1956, pp. 26-41. - 5. Maccoll, J. W., and Codd, J.: Theoretical Investigation of the Flow Around Various Bodies in the Sonic Region of Velocities. British Theoretical Res. Rep. No. 17/45, B.A.R.C. 45/19, Ministry of Supply, Armament Res. Dept., 1945. - 6. Probstein, Ronald F.: Inviscid Flow in the Stagnation Point Region of Very Blunt-Nosed Bodies at Hypersonic Flight Speeds. WADC TN56-395 (Contract No. AF 33(616)-2798), Wright Air Dev. Center, U. S. Air Force, Sept. 1956. (Also available from ASTIA as Doc. No. AD97273.) TABLE I FAIRED TEMPERATURE VALUES | Time, | Temperature, ^O F, at station - | | | | | | | | | | | | |----------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------| | sec | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | 88.0 | 190 | 192 | 202 | 190 | 155 | 148 | 149 | 152 | 193 | 200 | 197 | 189 | | 88.2 | 200 | 205 | 225 | 215 | 165 | 160 | 156 | 160 | 204 | 215 | 217 | 194 | | 88.4 | 213 | 220 | 251 | 237 | 176 | 171 | 165 | 165 | 221 | 236 | 240 | 205 | | 88.6 | 232 | 245 | 285 | 265 | 189 | 182 | 175 | 173 | 247 | 265 | 267 | 226 | | 88.8 | 260 | 282 | 324 | 295 | 203 | 190 | 187 | 180 | 279 | 300 | 297 | 253 | | 89.0 | 294 | 324 | 370 | 330 | 216 | 200 | 200 | 190 | 314 | 340 | 327 | 286 | | 89.2 | 335 | 367 | 424 | 370 | 230 | 208 | 214 | 198 | 355 | 387 | 365 | 330 | | 89.4 | 383 | 417 | 481 | 420 | 245 | 218 | 229 | 208 | 402 | 440 | 405 | 381 | | 89.6 | 440 | 475 | 545 | 475 | 268 | 230 | 244 | 220 | 453 | 500 | 450 | 440 | | 89.8 | 505 | 537 | 621 | 535 | 288 | 245 | 257 | 232 | 515 | 565 | 505 | 510 | | 90.0 | 580 | 610 | 706 | 600 | 307 | 262 | 271 | 245 | 588 | 644 | 570 | 590 | | 90.2 | 664 | 695 | 795 | 665 | 335 | 280 | 284 | 260 | 672 | 735 | 652 | 687 | | 90.4 | 751 | 785 | 886 | 738 | 367 | 297 | 297 | 275 | 762 | 840 | 755 | 79 ¹ | | 90.6 | 842 | 870 | 977 | 810 | 400 | 315 | 310 | 290 | 849 | 948 | 860 | 900 | | 90.8 | 925 | 955 | 1063 | 880 | 437 | 335 | 321 | 305 | 933 | 1048 | 960 | 1005 | | 91.0 | 1000 | 1040 | 1140 | 945 | 1475 | 355 | 333 | 318 | 1014 | 1142 | 1055 | 1108 | | 91.2 | 1075 | 1120 | 1212 | 1005 | 515 | 375 | 345 | 330 | 1093 | 1240 | 1145 | 1205 | | 91.4 | 1147 | 1190 | 1273 | 1060 | 555 | 395 | 355 | 343 | 1168 | 1305 | 1220 | 1291 | | 91.6 | 1212 | 1245 | 1325 | 1105 | 592 | 415 | 365 | 355 | 1240 | 1362 | 1284 | 1364 | | 91.8 | 1273 | 1295 | 1369 | 1145 | 627 | 434 | 376 | 365 | 1305 | 1408 | 1343 | 1419 | | 92.0 | 1326 | 1337 | 1404 | 1180 | 660 | 454 | 383 | 375 | 1368 | 1445 | 1398 | 1462 | | 92.2 | 1375 | 1375 | 1431 | 1205 | 668 | 473 | 395 | 382 | 1415 | 1480 | 1450 | 1492 | | 92.4 | 1416 | 1415 | 1458 | 1230 | 713 | 492 | 403 | 388 | 1459 | 1505 | 1495 | 1513 | | 92.6 | 1452 | 1448 | 1471 | 1250 | 735 | 513 | 410 | 395 | 1496 | 1530 | 1530 | 1532 | | 92.8 | 1485 | 1480 | 1487 | 1268 | 758 | 533 | 418 | 400 | 1528 | 1555 | 1560 | 1552 | | 93.0 | 1516 | 1507 | 1503 | 1285 | 778 | 553 | 425 | 405 | 1557 | 1575 | 1585 | 1570 | | 93.2 | 1545 | 1535 | 1516 | 1303 | 806 | 573 | 434 | 412 | 1585 | 1593 | 1610 | 1590 | | 93.4 | 1574 | 1560 | 1530 | 1320 | 839 | 594 | 448 | 427 | 1610 | 1612 | 1633 | 1610 | | 93.6 | 1600 | 1585 | 1542 | 1335 | 865 | 615 | 465 | 443 | 1633 | 1630 | 1655 | 1630 | | 93.8 | 1625 | 1605 | 1555 | 1353 | 887 | 637 | 477 | 452 | 1656 | 1645 | 1677 | 1649 | | 94.0 | 1650 | 1625 | 1566 | 1370 | 909 | 658 | 488 | 460 | 1676 | 1660 | 1700 | 1668 | | 94.5 | 1700 | 1675 | 1590 | 1400 | 970 | 710 | 520 | 485 | 1728 | 1680 | 1750 | 1700 | | 95.0 | 1740 | 1710 | 1610 | 1430 | 1020 | 760 | 550 | 506 | 1760 | 1700 | 1780 | 1720 | | 95.5 | 1770 | 1732 | 1620 | 1448 | 1060 | 800 | 580 | 526 | 1790 | 1710 | 1800 | 1730 | | 96.0 | 1790 | 1742 | 1625 | 1458 | 1100 | 842 | 600 | 540 | 1806 | 1713 | 1815 | 1730 | | 96.5 | 1800 | 1750 | 1622 | 1462 | 1130 | 880 | 625 | 560 | 1809 | 1710 | 1820 | 1730 | | 97.0
97.5
98.0
98.5
99.0
99.5 | 1808
1805
1800
1790
1780 | 1750
1742
1736
1726
1710
1700 | 1618
1610
1600
1590
1580
1570 | 1468
1468
1468
1468
1468
1460 | 1155
1180
1198
1210
1220
1232 | 910
940
962
988
1007
1020 | 650
670
692
715
735
755 | 575
590
610
621
633
650 | 1808
1800
1790
1780
1770
1760 | 1700
1690
1680
1663
1650
1632 | 1820
1810
1802
1797
1781
1770 | 1720
1710
1700
1690
1678
1660 | | 100.0 | 1760 | 1685 | 1553 | 1450 | 1240 | 1036 | 772 | 660 | 1745 | 1620 | 1752 | 1650 | | 100.5 | 1748 | 1670 | 1540 | 1442 | 1250 | 1050 | 790 | 670 | 1732 | 1608 | 1735 | 1632 | | 101.0 | 1733 | 1655 | 1530 | 1440 | 1253 | 1062 | 810 | 682 | 1720 | 1591 | 1720 | 1620 | | 101.5 | 1720 | 1640 | 1520 | 1430 | 1260 | 1080 | 825 | 694 | 1700 | 1580 | 1700 | 1610 | | 102.0 | 1700 | 1623 | 1510 | 1422 | 1262 | 1090 | 840 | 702 | 1685 | 1568 | 1685 | 1592 | | 102.5 | 1689 | 1610 | 1500 | 1416 | 1268 | 1100 | 850 | 710 | 1668 | 1550 | 1668 | 1578 | | 103.0 | 1675 | 1590 | 1488 | 1408 | 1270 | 1102 | 860 | 718 | 1650 | 1540 | 1650 | 1560 | | 103.5 | 1658 | 1575 | 1475 | 1400 | 1270 | 1110 | 870 | 722 | 1630 | 1520 | 1630 | 1550 | | 104.0 | 1640 | 1560 | 1462 | 1390 | 1270 | 1111 | 880 | 730 | 1613 | 1510 | 1614 | 1532 | | 104.5 | 1624 | 1542 | 1450 | 1380 | 1270 | 1115 | 888 | 735 | 1598 | 1494 | 1596 | 1520 | | 105.0 | 1610 | 1527 | 1440 | 1370 | 1268 | 1118 | 892 | 745 | 1580 | 1480 | 1578 | 1505 | | 105.5 | 1590 | 1510 | 1428 | 1362 | 1263 | 1119 | 900 | 750 | 1562 | 1465 | 1560 | 1488 | | 106.0
106.5
107.0
107.5
108.0
108.5 | 1574
1555
1535
1520
1500
1486 | 1495
1480
1468
1453
1440 | 1417
1402
1390
1378
1363
1350 | 1351
1342
1332
1323
1313
1301 | 1260
1258
1252
1250
1242
1240 | 1120
1120
1120
1118
1115
1115 | 908
910
918
920
923
928 | 75 ¹ 4
758
762
768
770
773 | 1550
1535
1517
1500
1478
1470 | 1450
1440
1420
1410
1395
1380 | 1540
1525
1508
1490
1472
1460 | 1470
1460
1445
1430
1420
1410 | | 109.0 | 1470 | 1410 | 1340 | 1290 | 1234 | 1115 | 930 | 780 | 1456 | 1370 | 1440 | 1393 | | 109.5 | 1450 | 1400 | 1330 | 1280 | 1230 | 1110 | 935 | 782 | 1440 | 1360 | 1430 | 1380 | | 110.0 | 1435 | 1380 | 1320 | 1270 | 1225 | 1110 | 940 | 788 | 1420 | 1348 | 1410 | 1370 | | Measured
thickness,
in | 0.188 | 0.188 | 0.187 | | 0.127 | 0.127 | 0.127 | 0.127 | 0.188 | 0.188 | 0.187 | 0.188 | Figure 1.- Five-stage rocket model on launcher. L-97232 Figure 3.- Fifth stage of five-stage rocket showing nose shape test (a) Nose detail. (b) Location of thermocouples. Figure 4.- Details of nose and thermocouple installation. Figure 5.- Model trajectory. Figure 6.- Model velocity and altitude history. Figure 7.- Model Mach number and Reynolds number history. Figure 8.- Typical variation of temperature with time. 1 Figure 9.- Apparent heating rates compared with values corrected for lateral heat flow. CONTINUETAL Figure 10. - Temperature as function of position on nose. Figure 11.- Comparison of heating rates measured at three radial locations or Figure 12.- Comparison of theoretical and measured heating rastagnation point (thermocouple 1). Figure 13.- Comparison of measured and theoretical ratios of local heating rates heating rates. 30 1000 82 90 100 110 120 130 1h0 150 160 170 180 190 200 t, sec Figure 14.- Variation of Mach number, altitude, and temperatures with time from beginning of reentry until splash. Figure 15.- Flat-face pressure distributions. COMP. (a) Velocity gradients. (b) Heat-transfer rates. Figure 16. - Comparison of flat and hemispherical stagnation-point velocity gradients and heat-transfer rates.